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Synchronization of diffusively coupled oscillators near the homoclinic bifurcation
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It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the
in-phase synchronization and also that it is the only stable state in the weak-coupling limit. Recently, however,
it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization
when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal
oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which
unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes
in the sychronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed
both qualitatively and quantitatively in the weak-coupling limit. A general form of coupling is introduced and
the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase
diagram using the bifurcation analysis.@S1063-651X~99!02309-0#

PACS number~s!: 05.45.2a, 87.10.1e, 82.40.Bj
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I. INTRODUCTION

Synchronizations between nonlinear oscillations are ab
dant in a variety of situations ranging from physical to b
logical phenomena@1,2#. In particular, recent studies to un
derstand information processings of the nervous syst
have been guided by the idea that synchronization of os
latory neuronal units may provide a mechanism for functio
ing of the neural systems, which has been supported by
perimental observations@3,4#. More specifically, it has been
suggested that the temporal correlation scheme among o
latory neuronal units may underlie the mechanism for
feature binding and segmentation in the sensory percept
@5#.

A prototype of the nonlinear oscillations may be provid
by the well-known van der Pol oscillator which was orig
nally devised as a model in the electronic circuit theory@6#.
Dynamic behaviors of the oscillator are rather simply p
dicted from the existence of a single equilibrium~source!
and a single limit cycle in the phase space. Often arising
many physical systems with an inherent nonlinear ene
dissipation, such a limit cycle oscillation naturally occurs
a balance between the energy generation at a small ampl
oscillation near the source and the energy dissipation
large amplitude. The coupled dynamics of such oscillatio
has also been studied extensively and it has been well kn
from the literatures that a diffusive coupling between tw
such oscillations typically leads to the in-phase synchron
tion and also that the in-phase synchronization is the o
stable state in the weak-coupling limit@7,8#.

Meanwhile, a rather different kind of synchronization b
havior has been observed for the coupled neuronal oscilla
in a certain range of the oscillator parameters@9,10#. That is,
it has been shown that the in-phase synchronization may
be stable for the diffusively coupled neuronal oscillato
even when the coupling strength is sufficiently weak. Su
examples of neuronal models include the Morris-Lecar@12#
and the Hindmarsh-Rose model@13#. Even though these
PRE 601063-651X/99/60~3!/2799~9!/$15.00
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models may exhibit different specifics in detail, their dyna
ics are qualitatively the same since they share the comm
structure of phase space that is based on the existenc
three equilibria and one limit cycle. The equilibria corr
spond to a stable node (N), a saddle (S), and an unstable
focus (F), respectively. The limit cycle is located at th
boundary that limits flows diverging out of the focus. A typ
cal phase portrait is depicted in Fig. 1.

The two coexisting attractors represent the two poss
states of a spiking neuron. That is, the stable node co
sponds to the resting state and the limit cycle to the susta
firing state of a neuron. The stable manifolds of the sad
separate the phase space into two attraction basins. Co
quently, a stimulus to a resting neuron may not lead to fir
of the neuron unless it is strong enough to push the trajec
over the separatrix into the other basin for the firing state

When two neurons are in the firing state and are coup
to each other diffusively, the coupling results in the~phase-
locked! synchronization of two oscillations. The phas
locking, however, is not necessarily of in-phase even in
regime of the weak-coupling strength, in contrast to the c
of the coupled van der Pol oscillations. Instead, the ph
relation between them depends on details of the nature o
oscillations as well as the coupling itself, which will be e
plained more in the following sections. Preceding stud
have pointed out that the instability of the in-phase synch
nization is essentially due to the vector field deformation

FIG. 1. Typical phase portrait of the neuronal oscillators.
2799 © 1999 The American Physical Society
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the presence of the saddle point near the limit cycle, wh
implies the situation when the limit cycle is close to t
homoclinic bifurcation@10,11#.

In the present study we consider in detail the depha
synchronization not just in the context of the neuronal m
els but as a generic phenomenon that occurs in coupled
cillators near the homoclinic bifurcation. In doing so, w
consider to which class of two-dimensional oscillators
particular neuron models belong. This analysis allows us
propose a transparent model system through a minor m
fication of the van der Pol oscillator~Sec. II!. The proposed
model of the coupled oscillators manifests the dephased
chronization as observed in the neuronal models. Furt
more, the variation of parameters can change the prope
of the model system from the ‘‘classical’’ van der Pol b
havior to the neuronal one. This fact also allows us to inv
tigate the dephasing behaviorquantitatively~Sec. III!.

Because the dephasing effect was found strongly dep
dent on the coupling direction, the introduction of a gene
vector form of coupling appears to be a natural logical s
for our study~Sec. IV!. The synchronization behaviors ove
a wide range of the coupling parameters are explored in S
V using the techniques of the bifurcation analysis to co
struct the phase diagrams. Finally, the results observed f
the proposed abstract model are compared with the spe
example of the neuronal oscillator model.

II. MODIFIED van der POL OSCILLATOR

A general form of two-dimensional oscillatory system
can be given in the following form:

ẍ1F1~x,ẋ,p!ẋ1F2~x,p!50, ~1!

where the vectorp represents a set of the control paramete
The functionsF1 andF2 can be given arbitrarily as long a
they fulfill conditions for the existence of an oscillation.
the given formF1 is responsible for the energy dissipatio
andF2 for the force exerted on the oscillator. The zeros
F2 determine the locations of the equilibria, and their stab
ties are determined from the signs ofdF2 /dx andF1 at each
equilibrium:dF2 /dx is negative only for saddles, and a no
and a focus are stable whenF1 is positive.

The simplest example of a nonlinear oscillator of su
form is given by the van der Pol oscillator,

F15a~x221!, F25x. ~2!

For positivea the only equilibrium atx50 is an unstable
focus sinceF1 is negative foruxu,1. In addition, since the
energy is dissipated at the large distances (uxu.1), there also
exists a stable limit cycle enclosing the focus with a fin
amplitude. Consequently, the global dynamic behavior of
van der Pol oscillator can be predicted from the simple str
ture of the phase space that contains only one unstable f
and a limit cycle.

The neuronal oscillator models can also be represente
the form of Eq.~1!. That is, for the case of the Morris-Leca
model those functions are given as
h
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F1~v,v̇ !5ḡCa

]m`~v !

]v
~v21!1

f

tw~v !

1
ḡCam`~12vk!1ḡL~vL2vK!1I dc2 v̇

v2vk
,

~3!

F2~v !5
f

tw~v !
$ḡK~v2vK!w`~v !

1ḡCam`~v !~v21!1ḡL~v2vL!2I dc%,

where the dimensionless variablev stands for the membran
potential of the neuron andI dc represents the external curre
input which plays as a main control parameter of the mod
More details for the model equation with the notations
the other parameters can be easily found in the litera
@10,12#.

In the typical regime of the parameters,F2 has three zeros
that correspond to a stable node, a saddle, and an uns
focus, respectively. When the value ofI dc is small, the stable
node is the only attractor. Then the resulting system beco
excitable; a small stimulus does not induce firings, wh
corresponds to an insignificant fluctuation of the phase fl
near the stable node, whereas a large enough stimulus
lead to a firing of the neuron, which corresponds a lo
excursion of the flow across the separatrix formed by
stable manifolds of the saddle. Firings are not sustained
the latter case unless stimuli are repeated.

However, asI dc is increased, the homoclinic bifurcatio
occurs atI dc'0.0729 on which the stable and the unstab
manifold of the saddle are connected to form a loop h
moclinic to the saddle. Beyond the bifurcation point, a sta
limit cycle exists, the flow on which corresponds to the su
tained periodic firings. Consequently, in this parameter
gime the phase space contains three equilibria together
a limit cyle, as its typical phase portrait can also be given
Fig. 1. This structure of phase space can be readily predi
from the shape of the functionsF1 andF2 as shown in Fig.
2~a!. That is, three equilibria are located at the zeros ofF2
and the type of each equilibrium is determined from t
signs of F1 and dF2/dx. In the figure,F1 is given as a
contour plot in the (v,v̇) plane and the dark area correspon
to the negative dissipation~the energy generation!.

As indicated above, the limit cycle oscillations that a
close to the homoclinic bifurcation are typical in the ne
ronal oscillators. Therefore, in understanding systematic
the generic behaviors of the coupled dynamics between s
oscillations, it would be desirable to have a simple oscilla
model that is easily controllable and that still shares the f
tures of interest with the neuronal oscillators as well. For t
purpose we propose a simple model as follows and
present study will be focused on the quantitative exami
tions on this model.

The model is obtained from the van der Pol oscillat
while a slight modification is needed to maintain the requir
structure of the phase space; hereafter, this model will
called the modified van der Pol~MVP! model. That is, to
have three equilibria, we need to introduce a nonlinear cu
force:

F1~x!5a~x22m!,
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FIG. 2. ~a! Function plot ofF2(v) and contour plot ofF1(v,v̇) for the Morris-Lecar model. The dark area corresponds to the nega
dissipation, i.e.,F1,0. ~b! Function plots ofF1(x) andF2(x) for the MVP model.
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F2~x!5x~x1d!~x12d!/d2, ~4!

wherea, m, and d are the control parameters that assu
positive values.

The MVP model maintains the features of the neuro
models in that the phase space has basically the same s
ture as shown in Fig. 1. The function plots forF1 andF2 are
shown in Fig. 2~b!. The three equilibrium points are locate
at ẋ50 and xF,S,N50,2d,22d for the focus, the saddle
and the stable node, respectively. Also, the slopes ofF2 at
the equilibria aredF2 /dx52,21,2, respectively. The focu
is unstable sinceF1 is negative atxF and the limit cycle is
located in between the unstable focus and the saddle. In
presentation we setd53 anda50.2. For the fixed values o
d and a, the distance to the homoclinic bifurcation is co
trolled bym; the limit cycle gets closer to the saddle asm is
increased and the homoclinic connection occurs atm
'1.255. The limit cycle far from the bifurcation with a sma
m reduces to the similar situation of the van der Pol osci
tion.

In the following sections we will consider various co
pling configurations. For this purpose it turns out that a m
convenient form for the MVP model is provided by the c
nonical form of Eq.~1!:

ẋ5y,
~5!

ẏ52F1~x,y!y2F2~x!.

III. DEPHASING OF SYNCHRONIZED OSCILLATIONS
NEAR THE SADDLE

In this section, using the coupled MVP model, we co
sider the synchronization behaviors between two limit cy
oscillations near the homoclinic bifurcation based on
dephasing mechanism of phase flows near the saddle p

Let us consider a simpler case of the single-variable c
pling. That is, the coupled MVP model with a diffusiv
position-variable coupling is given as
e
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uc-

is

-

e

-
e
e
nt.
-

ẋ15y11«~x22x1!,
~6!

ẏ152F1y12F2 ,

where the coupling strength« is assumed to be sufficientl
small so that the perturbation raised in each subsystem
negligibly small. The coupling term for the other oscillator
given symmetrically as«(x12x2).

Figure 3 shows the contour plot for the magnitude of t
phase velocityvf for the single oscillator in the absence

coupling; the phase velocity defined asvf5Aẋ21 ẏ2 van-
ishes at the equilibria (S and F). For smallm values, the
limit cycle is located far from the saddle. Then the pha
space structure in terms of thevf surface along the limit
cycle is qualitatively equivalent to that of the van der P
oscillator, for which it is known that a diffusive couplin
typically leads to the stable in-phase synchronization.
examplary limit cycle trajectory atm50.2 is depicted asG1
in the figure.

FIG. 3. Contour plot ofvf and location of limit cycles for the
MVP model. The limit cycles are drawn form50.2 (G1) and m
51.0 (G2).



-

nt

d
a

-
y

le
a

iv

e
ou
or
e

to
he

he

es
h
th

s
e
t

-
u
.

een
o
e

in-
g

el

u-
the
-
n,

nd
be-

in

e
on
tud-
an
uits
its,
nd
al-

2802 PRE 60DMITRY POSTNOV, SEUNG KEE HAN, AND HYUNGTAE KOOK
However, asm is increased, the limit cycle gradually ap
proaches close to the saddle and the shape of thevf surface
explored by the limit cycle becomes qualitatively differe
from the smallm case. The limit cycle trajectory atm51.0 is
plotted and labeled asG2 in Fig. 3. A trajectory onG2 spends
most time near the saddle and, therefore, the interaction
to coupling in this region becomes important. Notice th
sincevf together with the vector field changes asm changes,
it is impossible to plot bothG1 and G2 in the same plot.
Accordingly, in Fig. 3, onlyG2 has been plotted with nu
merical accuracy while the plot ofG1 has been added onl
schematically to help compare the two cases.

The flows of the vector field in the vicinity of the sadd
and the dephasing behavior in the presence of coupling
depicted schematically in Fig. 4 for the case of the diffus
position coupling as given in Eq.~6!. The circles aroundS
represent thevf contour lines andWs andWu represent the
stable and the unstable manifolds of the saddle, respectiv
G denotes the limit cycle trajectory in the absence of c
pling and Gs and G f denote trajectories of each oscillat
perturbed due to coupling, as will be explained further b
low.

Suppose there is a small time lag between two oscilla
when they enter into the vicinity of the saddle. That is, t
one oscillator (V1) advances in phase the other (V2) as
depicted at the bottom ofG. Then, the coupling force onV1
acts in the positivex direction where the flow velocity is
faster, whereas the coupling force onV2 acts in the other
direction where the flow velocity is slower. Therefore, t
trajectory of V1 is gradually pushed to the trajectoryG f
which is faster thanG and the trajectory ofV2 to Gs which is
slower. As a result, the initial time lag diverges. This impli
that the in-phase synchronization can be unstable, whic
contrary to the synchronization behavior observed in
coupled van der Pol oscillators.

It should be notified that the dephasing does not neces
ily occur all the time when the limit cycle is close to th
saddle point. A similar consideration can also be given
show that the diffusive ‘‘velocity-coupling’’ leads to the in
phase synchronization; in this case the coupling force wo
be in the vertical direction in Fig. 4, and hence attractive

FIG. 4. Phase flows near the saddle (S).
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To get a quantitative estimate for the dephasing betw
the oscillators, let us first divide the limit cycle into tw
pieces by a lineAB as shown in Fig. 3. It is expected that th
effect of coupling in the region of the saddle~to the left of
AB) is much more relevant to the synchronization. We
troduce the measuresP andQ for the linear rate of dephasin
as follows:

DtB5PDtA ,
~7!

DtA5QDtB ,

whereDt in the right-hand side of Eq.~7! is an initial time
lag at the locationA or B, andDt in the left is the evolved
time lag measured at the other side. The values ofP andQ
are to be determined in the limit of the small initialDt.

The numerical investigations for the coupled MVP mod
show that P is insensitive tom (P'1). Meanwhile, Q
strongly depends onm. The variation ofQ versusm is shown
in Fig. 5 for different coupling strengths and different co
pling variables as well. As can been seen in the figure,
position coupling~curves 1 and 2! leads to stronger dephas
ing asm approaches the value of the homoclinic bifurcatio
m'1.255. The other case of the velocity coupling~curves 3
and 4! leads to in-phasing. The trend of both in-phasing a
dephasing becomes stronger as the coupling strength
comes stronger: compare the curves 2,4 for«50.01 with the
curves 1,3 for the«50.001.

IV. VECTOR COUPLING

For a diffusively coupled system, the coupling term
general would be proportional to both differencesx12x2 and
y12y2. A simpler case might be conceived in which th
coupling is through only a single variable, either the positi
or the velocity. For instance, as often considered in the s
ies of the coupled oscillators, only the position coupling c
be employed. The examples include the electronic circ
with a purely resistive coupling between component circu
the inertial coupling for mechanical oscillator systems, a
the neuron models with the electric coupling. In more re

FIG. 5. Q versusm, the linear dephasing rate. The dotted lineH
denotes the homoclinic bifurcation point.
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istic circumstances, however, the two-variable coupl
seems to be more natural. For instance, the reactance pr
in electronic circuits or the propagation time delay of t
impulses along the neuronal axon may well require c
plings between oscillator units through the velocity variab

In the following we attempt to consider the general ca
of the two-variable coupling and choose a form called
vector coupling. That is, the coupling is introduced using
vectorK5(Kx ,Ky) as follows:

ẋ15y11Kx~x22x1!,
~8!

ẏ152F1y12F21Ky~y22y1!.

For the other oscillator the coupling term is obtained by
terchangingx1 andy1 with x2 andy2, respectively. That is,
the coupling is given symmetrically. Such a form of coupli
has been previously considered for studies in different c
texts @7,8#.

In the present work we represent the vector coupling
ing the polar coordinate:

Kx5K cosC,
~9!

Ky5K sin C.

That is, K denotes the coupling strength and the angleC
denotes the relative weight of coupling between two va
ables.C can also be viewed as the orientation angle of
coupling force in the two-dimensional subspace of each
cillator. As special cases, the coupling force becomes att
tive to each other whenC5p/4 and repulsive whenC
55p/4. The single-variable coupling cases are achie
when C50,p ~the position-coupling! and C56p/2 ~the
velocity-coupling!, respectively. The ‘‘purely’’ diffusive
coupling refers to the regime where neitherKx nor Ky is
negative, that is, where 0<C<p/2.

V. SYNCHRONIZATION OF THE COUPLED
MVP OSCILLATORS

The presentation of the observations on the synchron
tion behaviors of the coupled MVP equations is divided
three subsections below. The first part considers the c
when the coupling strength is sufficiently weak so that
analytic method can be applicable. The second part consi
the case of the finite coupling strength and shows how
results in the weak-coupling limit extend in this regime,
alone some additional behaviors. The third part considers
strong-coupling strength regime with an intermediate va
of m where the coupled oscillators are placed in an interm
diate distance to the homoclinic bifurcation.

A. Weak-coupling limit

First, we consider the weak-coupling case in which
coupling raises only a negligible perturbation to the lim
cycles of the uncoupled oscillators. It is well known th
such limits can be analyzed using the phase model reduc
method@1,14#. That is, in this scheme, each limit cycle
approximated with the uncoupled one and the phase dyn
ics between oscillators due to coupling can be analy
g
ent
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.
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merely from the antisymmetric part,Ga
eff(Df), of the effec-

tive coupling function, Geff(Df), defined as

Geff~Df!5
1

2pE0

2p

Z~f!p~f,Df!df, ~10!

whereDf denotes the phase difference between two os
lators andp(f,Df) denotes the perturbation due to couplin
that depends on the oscillator phases. The sensitivity fu
tion, Z(f)[¹XfuX5X0(f) , measures the phase-depende

response of the uncoupled limit cycle (X0) to the perturba-
tion.

Then, the zeros ofGa
eff(Df) correspond to the phase

locked synchronization states and their stabilities are de
mined from the slope ofGa

eff(Df) at the corresponding
states: the negative slope means a stable state, and vice v
Some typical behaviors ofGa

eff(Df) at different parameter
values are shown in Fig. 6. The three curves in the fig
correspond to the three main kinds of the synchroniz
states: the in-phase (I ), antiphase (A), and out-of-phase syn
chronization (O). Due to the symmetry of Eq.~8!, the exis-
tence of the in-phase state is trivial. The existence of
antiphase state is also guaranteed due to the periodicit
Ga

eff(Df). The out-of-phase state corresponds to the pha
locked state with phase difference between zero andp. The
symmetry of Eq.~8! is broken for the out-of-phase state
~also forA), but they occur as a pair each of which is sym
metric to the other.

From the phase model analysis we observe that diffe
states of synchronization exist depending on the param
values ofm andC and the parameter space is basically
vided into four different regions. Figure 7~a! shows the phase
diagram in the polar coordinated plane of (m,C). The range
of m is given such that the radius of the plane is limited
the m value for the homoclinic bifurcation. In the figure th
blank area corresponds to the in-phase synchronization s
(I ), the dark gray area to the antiphase states (A), and the

FIG. 6. Plots ofGa
eff(Df) at three different parameter value

The label for each curve denotes the corresponding stable sync
nization state and the locations of the states are marked by the s
squares.
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FIG. 7. ~a! Phase diagram for the coupled MVP model in the weak-coupling limit.~b! Stability and bifurcation of the synchronizatio
states along the circular path of~a!. The insets denote the corresponding symmetry-breaking bifurcations among them.
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the
dashed area to the out-of-phase states (O). The overlap of
the I and A areas is denoted by the light gray area (C) in
which the in-phase states and the antiphase states co
The scale of the radial axis has been nonlinearly transform
to magnify the behavior at largerm values.

For smaller m values (m;0.1, roughly!, the diagram
shows that the synchronization behavior is qualitativ
equivalent to that of the coupled van der Pol oscillato
Namely, the in-phase synchronization is the only stable s
in the ~purely! diffusive coupling regime. The synchroniza
tion states are either of in-phase (I ) or antiphase (A), de-
pending on the coupling angleC; theO states live only in a
negligibly small area.

For largerm values, however, synchronization depen
not only onC but also onm. To see the parameter depe
dence of the behavior, let us setm51.2 and, starting from
some value within theI region, sayC53p/4, increaseC
along the circular path as denoted in Fig. 7~a!. The in-phase
state is the only stable state until it reachesP1, where the
Floquet multiplier of maximum magnitude becomes11.
The in-phase state loses stability at this point and two o
stable states with broken symmetry (O states! are born. The
curve of the symmetry-breaking bifurcations is denoted
SB1 in the figure. AsC is increased, the pair of the out-o
phase states collide with each other and disappear atP2,
where the inverse symmetry-breaking bifurcation (SB2) oc-
curs, which in turn gives birth to a stable antiphase state (A).

WhenC is further increased, the in-phase state becom
stable atP3, while the antiphase state still remains stab
That is, there exists a region where both the in-phase and
antiphase state are stable, as denoted byC in the figure. They
coexist until the antiphase state loses its stability atP4 upon
the symmetry-breaking bifurcation with increasedC. The
bifurcation curves passing throughP3 andP4 are denoted in
Fig. 7~a! as SB3 and SB4, respectively. The bifurcations a
SB3 andSB4 are subcritical in that they are entailed by t
presence of two unstable~out-of-phase! states.
ist.
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.
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To summarize the contrasted behaviors, the phase
gram of Fig. 7~a! shows that the in-phase synchronization
the only stable state for the weak diffusive coupling, es
cially for 0<C<p/2, which is similar to the behaviors o
the coupled van der Pol oscillators. However, this is tr
only when m is sufficiently small, that is, when the limi
cycle is far from the homoclinic bifurcation. The diagra
also shows that the in-phase synchronization may not be
only stable state even in the regime of the diffusive coupl
when the limit cycle approaches the homoclinic bifurcati
with increasedm. Such a tendency seems to be more o
standing for the case of the position-coupling especially,
one can notice from the presence of the antiphase sync
nization as the only stable state atC;0 andm;1.255.

The three synchronization states occur by exchang
their stabilities under the symmetry-breaking bifurcation
The occurrence of the symmetry-breaking bifurcations alo
the circular path of Fig. 7~a! is schematically depicted in Fig
7~b!. The circles at the four sites represent the variation
the phase differenceDf and the smaller circles on them
denote the synchronization states; the filled small circle
notes the stable state and the empty circle denotes the
stable state. In the insets of the bifurcation diagrams,
branches for in-phase and antiphase states are denote
straight lines and the emerging pairs of branches
symmetry-breakingO states are denoted as parabolic curv
A solid line denotes a stable branch and a dotted line
unstable branch.

B. Finite coupling strength

When the coupling strength becomes finite, the pertur
tion of the limit cycle due to coupling can be significant an
consequently, the phase model reduction may not be ap
priate for predicting the behavior of the coupled dynami
Then, one needs to resort to direct numerical methods.

In this subsection, using the techniques of the bifurcat
analysis, we examine the synchronization behaviors of
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FIG. 8. ~a! Phase diagram for the coupled MVP model atm51.2 up to finite coupling strength.~b! Bifurcation diagrams along the path
denoted in~a!.
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9.
coupled MVP model over a range of the coupling streng
focusing on how the results of the weak-coupling limit in t
preceding subsection extend in the regime of the finite c
pling strength. Also we obtain the phase diagram for
coupled Morris-Lecar model and compare it with the one
the MVP model to show that the proposed model in a m
erate range of the parameters may well display the gen
behaviors of the coupled oscillator systems near the
moclinic bifurcation.

Since our primary interest is in the limit cycle oscillation
near the homoclinic bifurcation, we fixm51.2 for both the
oscillators, which is close to the bifurcation point, and th
vary the two coupling parameters,K and C. In particular,
our view of interest is limited to the region of the pha
space where each oscillator is in a stable oscillatory state
may call this region ‘‘the region of coupled oscillations.
Therefore, whenever trajectories leave the region we ass
that there are no stable attractors in the region; one me
nism of such disappearance is given via a boundary cr
the details of which are beyond the present scope.

The resulting phase diagram in the polar coordina
plane (K,C) is shown in Fig. 8~a! in the regime ofK,
;0.013. The occurrence of the boundary crisis is denote
BC and the region of the parameter space with no attrac
in the region of coupled oscillations is colored black in t
diagram. Notice that Fig. 7~a! and Fig. 8~a! are drawn in the
different parameter planes.

As shown in the weak-coupling limit, there exist thre
main kinds of synchronization states: the in-phase (I ), an-
tiphase (A), and out-of-phase (O) states. AsK becomes fi-
nite, the region of each state starts to be deformed from
phase model prediction, which is manifested by the defl
tion of the bifurcation lines that depend onK. Besides the
symmetry-breaking bifurcation described previously, t
states may also undergo other bifurcations such as pe
doubling that cannot be predicted from the phase model
scription either.
,

-
e
r
-

ric
o-

e

e
a-

is,

d

as
rs

e
c-

e
od
e-

Typical behaviors of the transitions and their coexisten
are depicted in Fig. 8~b! along theC paths with two different
K values: the two paths are labeled as shown in Fig. 8~a!.
The branches in the diagrams are drawn using the same
ventions as in Fig. 7~b!. In each subset the upper horizont
line denotes the in-phase state branch (I ) and the lower line
denotes the antiphase state branch (A). Note that the diagram
depicted for path 1 of smallerK coincides with the behavio
observed in the case of the weak-coupling limit@Fig. 7~b!#.

Path 2 of largerK includes the period-doubling cascad
of O states. Namely, anA state undergoes the symmetr
breaking bifurcation, resulting in two symmetric branches
stable O states. AsC is decreased, theO states at each
branch undergo the period-doubling cascades and these
cades lead to the onset of chaos and are symmetric to
other as well. AsC is further decreased, two chaotic attra
tors merge to form a single chaotic attractor, which th
restores the symmetry. This symmetric chaotic attrac
eventually disappears via a boundary crisis and the trajec
leaves the region of coupled oscillations. The perio
doubling cascades ofO states also occur at the other side
the BC region.

In Fig. 8~b!, from the diagram corresponding to path
one may also notice that the saddle-node bifurcation of
out-of-phase states provides an additional source for the b
of a pair of theO states, which can be viewed as the co
nection of a stable and an unstable branch of theO state that
originate from different states,I and A, respectively. This
saddle-node bifurcation is not observed in the weak-coup
limit @Fig. 7~a!# even though they can occur in the pha
model description; the saddle-node bifurcation occurs at
tangency ofGa

eff in Fig. 6. The region of theseO states is
denoted in Fig. 8~a! as the dark dashed area.

For a comparison with the neuronal model, the phase
gram for the coupled Morris-Lecar model is shown in Fig.
For this model the homoclinic bifurcation takes place atI dc
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'0.0729 and the diagram has been obtained atI dc50.0750,
close to the homoclinic bifurcation. The broader region
chaos following the period-doubling cascades is denoted
the hatched area in the figure.

The organization of the various states for the Morr
Lecar model is not precisely the same as for the MVP mo
which should vary depending on specific models. It is a
likely that the range of the parameters such asI dc andK has
not been chosen to best show a better coincidence. Neve
less, the features in the regime of the weak-coupling stren
are essentially the same for both models in terms of the
istence of the bifurcations and the pattern of their occ
rences. More importantly, the diagrams show that both s
tems have stable dephased synchronization in a wide ra
of the diffusive coupling regime, which has been the prima
interest of the present examination. Figure 9 also shows
existence of a cusp point (CP) to which many regions for
different states merge. The cusp point is not peculiar to
Morris-Lecar model, as such examples will also show for
MVP model at different parameter regimes~see the follow-
ing subsection!.

C. Strong coupling with an intermediate µ

So far we have emphasized a contrast between the be
iors of the coupled oscillators in two distinctive regimes
the aspect of the closeness to the homoclinic bifurcation,
is, the coupled van der Pol–type oscillators and the coup
oscillators near the homoclinic bifurcation. In this subsect
we examine the behavior of the coupled MVP model in
intermediate regime between those distinctive regim
which we may consider to be provided by setting the para
eter atm51.0. In particular, the case of the stronger coupli
strength is considered since it turns out that the weak c
pling results in rather trivial behaviors that have been alre
observed in Sec. V A. The phase diagram in this regime
the parameters is shown in Fig. 10, which demonstrate
variety of complex behaviors.

FIG. 9. Phase diagram for the coupled Morris-Lecar mode
I dc50.0750.
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The in-phase synchronization states, in addition to
symmetry-breaking bifurcation described previously, m
undergo two more kinds of bifurcations: the period-doubli
and the torus bifurcation. The period-doubling either giv
birth to a stable period-doubled in-phase state, or to non
the stable attractors. In the former case, the period-dou
in-phase state undergoes the symmetry-breaking bifurca
which in turn gives birth to a pair of out-of-phase state
These out-of-phase states undergo a cascade of pe
doublings, leading to chaos in the same way as observed
theO states in Fig. 8. Two such cases are shown in Fig. 1
the northwest and the southeast directions.

The latter case of the period-doubling bifurcation enta
ing no attractors implies the occurrence of the boundary
sis with an attractor outside the region of coupled osci
tions. Therefore, the trajectory suddenly disappears from
region of coupled oscillation. The regime of the paramet
for this case is denoted by the black area in the diagram.
period-doubling bifurcations of the in-phase states result
in these two cases also occur for the Morris-Lecar model
can be found in Fig. 9.

The torus bifurcation of the in-phase states occurs whe
complex conjugate pair of the Floquet multipliers leaves
unit circle in the complex plane. The bifurcating torus
observed to retain the symmetry of Eq.~8!. The flows on the
torus are those for the coupled systems with two compe
frequencies. Below the curve for the torus bifurcation (T) in
Fig. 8~a!, note the existence of the familiar resonant tongu
corresponding to the frequency-locked states with ratio
rotation numbers. The most prominent among them is
tongue of the one-to-one locking, which is denoted in t
diagram. Notice also that the tongues can persist even in
absence of the stable torus nearby in the parameter sp
The torus disappears via a boundary crisis. The torus bi
cation also occurs for the Morris-Lecar model even thou
such a case is not indicated in Fig. 9; it is observed to oc
at a stronger coupling strength,K;0.15.

t FIG. 10. Phase diagram for the coupled MVP model atm
51.0 up to stronger coupling strength.
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A special notice is on the existence of the cusp points
the northwest and the southeast directions in Fig. 10 (CP in
the diagram!, to which all the regions of the period-doublin
merge to form a common boundary; they are observed to
the cusp points within the numerical resolution. Such a lo
tion implies that the codimension of the bifurcation would
infinite. Interestingly, the cusp point also exists in t
Morris-Lecar model as shown in Fig. 9. Possible questi
such as its genericity and the unfolding prompt further inv
tigations.

Again, the global organization pattern of the phase d
gram in Fig. 10 is not quite the same as for the Morris-Le
model in Fig. 9. However, as we have already noticed in t
subsection, the coincidences between the local behavio
the two models are striking. Therefore, in this sense of si
larities, it seems that the proposed MVP model represe
well the Morris-Lecar model over a wider range of the p
rameter space not just restricted to the neighbors of the
moclinic bifurcation with a rather weak-coupling strengt
We presume that this representation can be also appro
for other models having the structure of Fig. 1.

VI. CONCLUSIONS

Synchronization between coupled oscillations has b
shown to display distinctive behaviors as the limit cycle o
cillation approaches the homoclinic bifurcation. In this p
per, a generic physical model for studying such behav
has been proposed using the modified van der Pol equa
A general form of coupling has been also considered by
troducing the vector coupling between the variables of
two-dimensional oscillators.

The homoclinic bifurcation implies the presence of
saddle near the limit cycle. The dephasing mechanism of
synchronized oscillations in the vicinity of the saddle h
been analyzed both qualitatively and quantitatively in
weak-coupling limit. The dephasing rate measured by
linear rateQ is shown to increase dramatically as the lim
cycle approaches the homoclinic bifurcation.

The synchronization behaviors of the coupled MVP os
lators have been examined over a wide range of the coup
parameters. In the weak-coupling limit the phase model
duction method has been used to show the existence o
ce
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main synchronization states and to identify the transitio
among them through the symmetry-breaking bifurcatio
For the finite coupling strength we have resorted to the dir
numerical calculations using the techniques of the bifur
tion analysis, which has revealed the extended behaviors
cannot be predictable from the phase model description
both cases the phase diagrams have been obtained and
been shown that the in-phase synchronization may not be
only stable state in the regime of the diffusive coupling
the limit cycle approaches the homoclinic bifurcation.

The intermediate regime has also been examined wh
the coupled oscillators are in between the two distinct
regimes of the van der Pol–type oscillators and the osc
tors near the homoclinic bifurcation. A variety of comple
behaviors, including the period-doubling and the torus bif
cations, the mode-locking tongues, and chaos arises in
regime as the coupling strength becomes larger, for wh
the phase diagram has also been constructed.

The phase diagrams for the MVP model have been co
pared with the one for the Morris-Lecar model, which is on
an example of the neuronal models that have provided
tivations for the present study. The comparison leads t
reasonable conclusion that the synchronization behaviors
served in the MVP model should be generic for the syste
of coupled oscillators near the homoclinic bifurcation. T
close coincidences between the local behaviors of the mo
have also been observed over a wider range of the param
space, which is not restricted only to the neighbors of
homoclinic bifurcation with a rather weak-coupling streng
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