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It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the
in-phase synchronization and also that it is the only stable state in the weak-coupling limit. Recently, however,
it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization
when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal
oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which
unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes
in the sychronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed
both qualitatively and quantitatively in the weak-coupling limit. A general form of coupling is introduced and
the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase
diagram using the bifurcation analysj§1063-651X99)02309-0

PACS numbds): 05.45~a, 87.10+¢, 82.40.Bj

[. INTRODUCTION models may exhibit different specifics in detail, their dynam-
ics are qualitatively the same since they share the common
Synchronizations between nonlinear oscillations are aburstructure of phase space that is based on the existence of
dant in a variety of situations ranging from physical to bio-three equilibria and one limit cycle. The equilibria corre-
logical phenomenél,2]. In particular, recent studies to un- spond to a stable nodeNf, a saddle §), and an unstable
derstand information processings of the nervous systemf®cus (F), respectively. The limit cycle is located at the
have been guided by the idea that synchronization of oscilboundary that limits flows diverging out of the focus. A typi-
latory neuronal units may provide a mechanism for function-cal phase portrait is depicted in Fig. 1.
ing of the neural SystemS, which has been Supported by ex- The two C0eXiSting attractors represent the two pOSSible
perimental observatior8,4]. More specifically, it has been states of a spiking neuron. That is, the stable node corre-
Suggested that the tempora| correlation scheme among oscﬂponds to the resting state and the limit CyC|e to the sustained
|at0ry neuronal units may underlie the mechanism for thélrlng state of a neuron. The stable manifolds of the saddle
feature binding and segmentation in the sensory perceptiorig&parate the phase space into two attraction basins. Conse-
[5]. quently, a stimulus to a resting neuron may not lead to firing
A prototype of the nonlinear oscillations may be providedof the neuron unless it is strong enough to push the trajectory
by the well-known van der Pol oscillator which was origi- Over the separatrix into the other basin for the firing state.
nally devised as a model in the electronic circuit theld When two neurons are in the firing state and are coupled
Dynamic behaviors of the oscillator are rather simply pre-to each other diffusively, the coupling results in tfphase-
dicted from the existence of a single equilibriugource  locked synchronization of two oscillations. The phase-
and a single limit cycle in the phase space. Often arising ifocking, however, is not necessarily of in-phase even in the
many physical systems with an inherent nonlinear energyegdime of the weak-coupling strength, in contrast to the case
dissipation, such a limit cycle oscillation naturally occurs asOf the coupled van der Pol oscillations. Instead, the phase
a balance between the energy generation at a small amp"tud@'aﬁon between them depends on details of the nature of the
oscillation near the source and the energy dissipation at @scillations as well as the coupling itself, which will be ex-
large amplitude. The coupled dynamics of such oscillationglained more in the following sections. Preceding studies
has also been studied extensively and it has been well knowfgve pointed out that the instability of the in-phase synchro-
from the literatures that a diffusive coupling between twohization is essentially due to the vector field deformation in
such oscillations typically leads to the in-phase synchroniza-
tion and also that the in-phase synchronization is the only
stable state in the weak-coupling linjiz,8].
Meanwhile, a rather different kind of synchronization be- N S
havior has been observed for the coupled neuronal oscillators
in a certain range of the oscillator paramet{&4.0]. That is,
it has been shown that the in-phase synchronization may not
be stable for the diffusively coupled neuronal oscillators
even when the coupling strength is sufficiently weak. Such
examples of neuronal models include the Morris-Lgda
and the Hindmarsh-Rose modEl3]. Even though these FIG. 1. Typical phase portrait of the neuronal oscillators.
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the presence of the saddle point near the limit cycle, which . — amy(v)
implies the situation when the limit cycle is close to the  Fa(V.V)=0gca— —(v—1)+ — ™
homoclinic bifurcation10,11]. W

In the present study we consider in detail the dephased JeaMo(1—Vi) + 0, (Vv — Vi) + 1 ge—V
synchronization not just in the context of the neuronal mod- +

els but as a generic phenomenon that occurs in coupled os- VT Vk

cillators near the homoclinic bifurcation. In doing so, we f ©)
consider to which class of two-dimensional oscillators the Fo(v)= —{EK(V—VK)WOC(V)

particular neuron models belong. This analysis allows us to Tw(V)

propose a transparent model system through a minor modi- — _ —

fication of the van der Pol oscillatgSec. I). The proposed +9cam=(VI(V=1)+ g (v=vi)~lad,

model of the coupled oscillators manifests the dephased Syfhere the dimensionless variahlestands for the membrane
chronization qs_observed in the neuronal models. I:urth‘?r'otential of the neuron and, represents the external current
more, the variation of parameters can change the propertigg,, ;i \vhich plays as a main control parameter of the model.
of the model system from the “classical” van der Pol be-\ qre getails for the model equation with the notations for

havior to the neuronal one. This fact also allows us to invesfhe other parameters can be easily found in the literature
tigate the dephasing behaviquantitatively(Sec. Il). ,Elo 12,

Because the dephasing effect was found strongly depen- |, yhe typical regime of the parametefs, has three zeros

dent on the coupling direction, the introduction of a generalthat correspond to a stable node, a saddle, and an unstable
vector form of coupling appears to b.e a natural quical SteI:focus, respectively. When the valu’elgt is sméll, the stable
for our study(Sec. IV). The synchronization behaviors over 1, e is the only attractor. Then the resulting system becomes
aW|d_e range of the_: coupling parameters are explo_red n Se%xcitable; a small stimulus does not induce firings, which
V using the techniques of the bifurcation analysis t0 con-eqnonds to an insignificant fluctuation of the phase flow
struct the phase diagrams. Finally, the results observed fro'??ear the stable node, whereas a large enough stimulus may
the proposed abstract model' are compared with the specif|8ad to a firing of th,e neuron, which corresponds a long
example of the neuronal oscillator model. excursion of the flow across the separatrix formed by the
stable manifolds of the saddle. Firings are not sustained in
1I. MODIEIED van der POL OSCILLATOR the latter case unless stimuli are repeated.
However, ad 4. is increased, the homoclinic bifurcation
A general form of two-dimensional oscillatory systems occurs atl 4.~0.0729 on which the stable and the unstable
can be given in the following form: manifold of the saddle are connected to form a loop ho-
moclinic to the saddle. Beyond the bifurcation point, a stable
limit cycle exists, the flow on which corresponds to the sus-
tained periodic firings. Consequently, in this parameter re-
gime the phase space contains three equilibria together with
where the vectop represents a set of the control parametersa limit cyle, as its typical phase portrait can also be given by
The functionsF; andF, can be given arbitrarily as long as Fig. 1. This structure of phase space can be readily predicted
they fulfill conditions for the existence of an oscillation. In from the shape of the functiorfs; andF, as shown in Fig.
the given formF, is responsible for the energy dissipation 2(a). That is, three equilibria are located at the zero$ of
andF, for the force exerted on the oscillator. The zeros ofand the type of each equilibrium is determined from the
F, determine the locations of the equilibria, and their stabili-signs of F; and dF,/dx. In the figure,F, is given as a

ties _a_lre_determined _from the_ signsdif,/dx andF, at each  contour plot in the ¢,v) plane and the dark area corresponds
equ|l|br|um:dF2/dX IS negat|Ve Only for Saddles, and a nodeto the negative d|SS|pat|mhe energy generatia)n

X+ F1(X,X,p)X+F»(x,p)=0, (1)

and a focus are stable whén is positive. As indicated above, the limit cycle oscillations that are

The simplest example of a nonlinear oscillator of suchcjose to the homoclinic bifurcation are typical in the neu-
form is given by the van der Pol oscillator, ronal oscillators. Therefore, in understanding systematically
the generic behaviors of the coupled dynamics between such

Fi=a(x?—1), F,=x. (2)  oscillations, it would be desirable to have a simple oscillator

model that is easily controllable and that still shares the fea-

- o ) tures of interest with the neuronal oscillators as well. For this
For positivea the only equilibrium ax=0 is an unstable  p,rpose we propose a simple model as follows and the
focus sinceF; is negative forix|<1. In addition, since the present study will be focused on the quantitative examina-
energy is dissipated at the large distand&s* 1), there also  tions on this model.
exists a stable limit cycle enclosing the focus with a finite  The model is obtained from the van der Pol oscillator,
amplitude. Consequently, the global dynamic behavior of thynile a slight modification is needed to maintain the required
van der Pol oscillator can be predicted from the simple strucstrycture of the phase space; hereafter, this model will be
ture of the phase space that contains only one unstable focgg|ied the modified van der POMVP) model. That is, to

and a limit cycle. have three equilibria, we need to introduce a nonlinear cubic
The neuronal oscillator models can also be represented ifgce:

the form of Eq.(1). That is, for the case of the Morris-Lecar
model those functions are given as Fi(X)=a(x?— ),
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FIG. 2. (a) Function plot ofF,(v) and contour plot of;(v,v) for the Morris-Lecar model. The dark area corresponds to the negative
dissipation, i.e.F;<0. (b) Function plots ofF;(x) andF,(x) for the MVP model.

FZ(X):X(X+d)(X+2d)/d2! (4) k1:y1+8(X2_X1),

(6)

where «, u, andd are the control parameters that assume Y — E.v._F
positive values. Y1= —Fiyi1—Fo,
The MVP model maintains the features of the neuronal . . -
models in that the phase space has basically the same strJ¥€re the coupling strengih is assumed to be sufficiently
ture as shown in Fig. 1. The function plots fef andF, are sma!l SO that the perturba_ltlon raised in each sub_system is
shown in Fig. 2b). The three equilibrium points are located negligibly small. The coupling term for the other oscillator is

_ B given symmetrically as (x;—X5).
Ztn()j(_thoe 2?:5:;?%580’:62 _egt?vé(ljr t,?fs Jofﬁs’sfgee;adgtle' Figure 3 shows the contour plot for the magnitude of the
the equilibria ared FZ’/dx:pz 1 2y'respe’ctively 'IE)he zfc:)cus phase velocity , for the single oscillator in the absence of

1 1 L - . . - . _ * 2 - 2

is unstable sincé, is negative aks and the limit cycle is  COUPIiNg; the phase velocity defined ag=Vx“+y~ van-
located in between the unstable focus and the saddle. In thjghes at the equilibriag and F). For smallu values, the
presentation we set=3 anda=0.2. For the fixed values of limit cycle is IOC?tEd far from the saddle. Then the _ph_ase
d and , the distance to the homoclinic bifurcation is con- SPace structure in terms of the, surface along the limit
trolled by w; the limit cycle gets closer to the saddle ass cycle is qualitatively equivalent to that of the van der Pol
increased and the homoclinic connection occurs at oscillator, for which it is known that a diffusive coupling
~1.255. The limit cycle far from the bifurcation with a small typically 'eﬁds. to the st.able in-phase §ynchr.onization. An
u reduces to the similar situation of the van der Pol osciIIa—?x"’mpl.ary limit cycle trajectory at.=0.2 is depicted a',
tion. in the figure.

In the following sections we will consider various cou-
pling configurations. For this purpose it turns out that a more
convenient form for the MVP model is provided by the ca-
nonical form of Eq.(1):

3.0

X=Y,
. 6) - 0.0
y=—Fi(X,y)y—Fu(X). '

Ill. DEPHASING OF SYNCHRONIZED OSCILLATIONS
NEAR THE SADDLE

In this section, using the coupled MVP model, we con-
sider the synchronization behaviors between two limit cycle -3.0
oscillations near the homoclinic bifurcation based on the -3.0 -2.0 1.0 0.0 1.0
dephasing mechanism of phase flows near the saddle point. X

Let us consider a simpler case of the single-variable cou- FIG. 3. Contour plot of/,, and location of limit cycles for the

pling. That is, the coupled MVP model with a diffusive MVP model. The limit cycles are drawn fqe=0.2 (l';) and u
position-variable coupling is given as =1.0(T,).
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FIG. 5. Q versusyu, the linear dephasing rate. The dotted lihe
denotes the homoclinic bifurcation point.

FIG. 4. Phase flows near the sadd®) .

However, asu is increased, the limit cycle gradually ap- T i . for the dephasing b
proaches close to the saddle and the shape of jheurface 0 get a quantitative estimate for the dephasing between
the oscillators, let us first divide the limit cycle into two

explored by the limit cycle becomes qualitatively different ™ . N :
from the smallu case. The limit cycle trajectory at=1.0 is pieces by a ImgAB as shown_ln Fig. 3. It is expected that the
plotted and labeled &8, in Fig. 3. A trajectory o, spends effect of coupling in the region of the saddi® the left of

most time near the saddle and, therefore, the interaction dd%:\B) is much more relevant to the synchronization. We in-

to coupling in this region becomes important. Notice thatgg(:gﬁsv\t/r;? measuré&sandQ for the linear rate of dephasing

sincev , together with the vector field changesaghanges,

it is impossible to plot botH™; andI', in the same plot. Ata=PAt
Accordingly, in Fig. 3, onlyl', has been plotted with nu- B A )
merical accuracy while the plot df; has been added only Ata=QAtg,

schematically to help compare the two cases.

The flows of the vector field in the vicinity of the saddle whereAt in the right-hand side of Eq7) is an initial time
and the dephasing behavior in the presence of coupling angg at the locatiorA or B, andAt in the left is the evolved
depicted schematically in Fig. 4 for the case of the diffusivetime lag measured at the other side. The valueB ahd Q
position coupling as given in Ed6). The circles around  are to be determined in the limit of the small initiAt.
represent ther, contour lines and\V® andW" represent the The numerical investigations for the coupled MVP model
stable and the unstable manifolds of the saddle, respectivelghow thatP is insensitive tox (P~1). Meanwhile, Q
I' denotes the limit cycle trajectory in the absence of coustrongly depends op. The variation ofQ versusu is shown
pling andI's and I'y denote trajectories of each oscillator in Fig. 5 for different coupling strengths and different cou-
perturbed due to coupling, as will be explained further bepling variables as well. As can been seen in the figure, the
low. position coupling(curves 1 and Rleads to stronger dephas-

Suppose there is a small time lag between two oscillatorghg asu approaches the value of the homoclinic bifurcation,
when they enter into the vicinity of the saddle. That is, the, ~1.255. The other case of the velocity couplitgrves 3
one oscillator (2;) advances in phase the othel?f) as  and 4 leads to in-phasing. The trend of both in-phasing and
depicted at the bottom df. Then, the coupling force of2;  dephasing becomes stronger as the coupling strength be-
acts in the positivex direction where the flow velocity is comes stronger: compare the curves 2,4fer0.01 with the
faster, whereas the coupling force 6y acts in the other cuyrves 1,3 for thes=0.001.
direction where the flow velocity is slower. Therefore, the
trajectory of 2, is gradually pushed to the trajectoiy; IV. VECTOR COUPLING
which is faster tha' and the trajectory of), to I' which is
slower. As a result, the initial time lag diverges. This implies For a diffusively coupled system, the coupling term in
that the in-phase synchronization can be unstable, which igeneral would be proportional to both differenegs-x, and
contrary to the synchronization behavior observed in they;—y,. A simpler case might be conceived in which the
coupled van der Pol oscillators. coupling is through only a single variable, either the position

It should be notified that the dephasing does not necessapr the velocity. For instance, as often considered in the stud-
ily occur all the time when the limit cycle is close to the ies of the coupled oscillators, only the position coupling can
saddle point. A similar consideration can also be given tde employed. The examples include the electronic circuits
show that the diffusive “velocity-coupling” leads to the in- with a purely resistive coupling between component circuits,
phase synchronization; in this case the coupling force wouldhe inertial coupling for mechanical oscillator systems, and
be in the vertical direction in Fig. 4, and hence attractive. the neuron models with the electric coupling. In more real-
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istic circumstances, however, the two-variable coupling 0.8
seems to be more natural. For instance, the reactance prese
in electronic circuits or the propagation time delay of the I
impulses along the neuronal axon may well require cou-
plings between oscillator units through the velocity variable. A

In the following we attempt to consider the general case 03 r ]
of the two-variable coupling and choose a form called they 0
vector coupling. That is, the coupling is introduced using a[_~
vectorK = (K,,K,) as follows:

X1= Y1+ Ky(Xa—Xy), 03
, 8
y1=—F1y1i—F2+Ky(y>—Yy1).
For the other oscillator the coupling term is obtained by in- _o8 Lu . . . . . .
terchangingx; andy; with x, andy,, respectively. That is, —TT 0 +1T
the coupling is given symmetrically. Such a form of coupling A¢
has been previously considered for studies in different con-
texts[7,8]. FIG. 6. Plots of"(A $) at three different parameter values.
In the present work we represent the vector coupling usThe label for each curve denotes the corresponding stable synchro-
ing the polar coordinate: nization state and the locations of the states are marked by the small
squares.
Ky=K cosV,
L 9) merely from the antisymmetric parf,i“(A ¢), of the effec-
Ky=K sin¥. tive coupling functionI'®*f(A ¢), defined as

That is, K denotes the coupling strength and the arngle 1 (2

denotes the relative weight of coupling between two vari- Iref(Ag)= —f Z(P)p(h,Ap)d e, (10
ables. ¥ can also be viewed as the orientation angle of the 27 Jo

coupling force in the two-dimensional subspace of each os-

cillator. As special cases, the coupling force becomes attragvhere A ¢ denotes the phase difference between two oscil-
tive to each other when?=m/4 and repulsive whenp  lators andd(¢,A ¢) denotes the perturbation due to coupling
=57/4. The Sing|e-variab|e Coup”ng cases are achievedhat depends on the oscillator phases. The sensitivity func-
when W =0, (the position-couplingand W=+ /2 (the  tion, Z(¢)=Vx¢|x-x ), Measures the phase-dependent
velocity-coupling, respectively. The “purely” diffusive response of the uncoupled limit cyclX{) to the perturba-
coupling refers to the regime where neitheg nor K, is  tion.

negative, that is, where<QV¥ < 7/2. Then, the zeros ofgﬁ(Aqﬁ) correspond to the phase-
locked synchronization states and their stabilities are deter-
V. SYNCHRONIZATION OF THE COUPLED mined from the slope of ¢"(A¢) at the corresponding
MVP OSCILLATORS states: the negative slope means a stable state, and vice versa.

. . . Some typical behaviors df£"(A¢) at different parameter
The presentation of the observations on the synchronlz%;alues are shown in Fig. 6a The three curves in the figure

tion behaviors of the coupled MVP equations is divided mcorrespond to the three main kinds of the synchronized

three subsections below. The first part considers the casg X . :

. . - States: the in-phase)( antiphase A), and out-of-phase syn-
when the coupling strength is sufficiently weak so that an S o
analytic method can be applicable. The second part consideChromzatlon ©). Due to the symmetry of Eq8), the exis

the case of the finite counling strenath and shows how th{énce of the in-phase state is trivial. The existence of the
) pling strength al . . ntiphase state is also guaranteed due to the periodicity of
results in the weak-coupling limit extend in this regime, let

eff
alone some additional behaviors. The third part considers thg2 IEAdd))t' 'tl'he .?#t'zf'ph??f state cgrrtesponds to th;hphase—
strong-coupling strength regime with an intermediate valu ocked state with phase dilference between zeroandne

of u where the coupled oscillators are placed in an interme-symmmry of Eq.(8) is broken for t_he out-of-phase_states
diate distance to the homoclinic bifurcation. (also forA), but they occur as a pair each of which is sym-

metric to the other.

From the phase model analysis we observe that different
states of synchronization exist depending on the parameter
First, we consider the weak-coupling case in which thevalues ofu and¥ and the parameter space is basically di-

coupling raises only a negligible perturbation to the limit vided into four different regions. Figurd& shows the phase
cycles of the uncoupled oscillators. It is well known that diagram in the polar coordinated plane @f, ). The range
such limits can be analyzed using the phase model reductiodf w« is given such that the radius of the plane is limited to
method[1,14]. That is, in this scheme, each limit cycle is the u value for the homoclinic bifurcation. In the figure the
approximated with the uncoupled one and the phase dynanilank area corresponds to the in-phase synchronization states
ics between oscillators due to coupling can be analyzedl), the dark gray area to the antiphase stat®)s @nd the

A. Weak-coupling limit
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FIG. 7. (a) Phase diagram for the coupled MVP model in the weak-coupling lifmitStability and bifurcation of the synchronization
states along the circular path @&. The insets denote the corresponding symmetry-breaking bifurcations among them.

dashed area to the out-of-phase stat®@}. (The overlap of To summarize the contrasted behaviors, the phase dia-
the | and A areas is denoted by the light gray area) (in gram of Fig. T7a) shows that the in-phase synchronization is
which the in-phase states and the antiphase states coexiiie only stable state for the weak diffusive coupling, espe-
The scale of the radial axis has been nonlinearly transformedially for 0<W¥ < x/2, which is similar to the behaviors of
to magnify the behavior at largexr values. the coupled van der Pol oscillators. However, this is true
For smaller u values (u~0.1, roughly, the diagram only when u is sufficiently small, that is, when the limit
shows that the synchronization behavior is qualitativelycycle is far from the homoclinic bifurcation. The diagram
equivalent to that of the coupled van der Pol oscillatorsalso shows that the in-phase synchronization may not be the
Namely, the in-phase synchronization is the only stable statenly stable state even in the regime of the diffusive coupling
in the (purely) diffusive coupling regime. The synchroniza- when the limit cycle approaches the homoclinic bifurcation
tion states are either of in-phasg) (or antiphase A), de-  with increasedu. Such a tendency seems to be more out-
pending on the coupling angt®; the O states live only in a  standing for the case of the position-coupling especially, as
negligibly small area. one can notice from the presence of the antiphase synchro-
For larger u values, however, synchronization dependsnization as the only stable state'it~0 andu~1.255.
not only on¥ but also onu. To see the parameter depen- The three synchronization states occur by exchanging
dence of the behavior, let us set=1.2 and, starting from their stabilities under the symmetry-breaking bifurcations.
some value within the region, say¥ =3mx/4, increase¥ The occurrence of the symmetry-breaking bifurcations along
along the circular path as denoted in Figa)7 The in-phase the circular path of Fig. (&) is schematically depicted in Fig.
state is the only stable state until it reacties where the  7(b). The circles at the four sites represent the variation of
Floquet multiplier of maximum magnitude becomesl. the phase differenc& ¢ and the smaller circles on them
The in-phase state loses stability at this point and two othe@lenote the synchronization states; the filled small circle de-
stable states with broken symmeti® Gtate$ are born. The notes the stable state and the empty circle denotes the un-
curve of the symmetry-breaking bifurcations is denoted astable state. In the insets of the bifurcation diagrams, the
SB, in the figure. As¥ is increased, the pair of the out-of- branches for in-phase and antiphase states are denoted as
phase states collide with each other and disapped®,at straight lines and the emerging pairs of branches for
where the inverse symmetry-breaking bifurcati®Bf) oc-  symmetry-breakin@ states are denoted as parabolic curves.
curs, which in turn gives birth to a stable antiphase staje (A solid line denotes a stable branch and a dotted line an
When W is further increased, the in-phase state becomedgnstable branch.
stable atP5, while the antiphase state still remains stable.
That is, there exists a region where both the in-phase and the
antiphase state are stable, as denote@ bythe figure. They When the coupling strength becomes finite, the perturba-
coexist until the antiphase state loses its stabilit? atpon  tion of the limit cycle due to coupling can be significant and,
the symmetry-breaking bifurcation with increasdtd The consequently, the phase model reduction may not be appro-
bifurcation curves passing throudgty andP, are denoted in  priate for predicting the behavior of the coupled dynamics.
Fig. 7(@) as SB; and SBy, respectively. The bifurcations at Then, one needs to resort to direct numerical methods.
SB; and SB, are subcritical in that they are entailed by the In this subsection, using the techniques of the bifurcation
presence of two unstableut-of-phasg states. analysis, we examine the synchronization behaviors of the

B. Finite coupling strength
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FIG. 8. (a) Phase diagram for the coupled MVP modejat 1.2 up to finite coupling strengtltb) Bifurcation diagrams along the paths
denoted in(a).

coupled MVP model over a range of the coupling strength, Typical behaviors of the transitions and their coexistences
focusing on how the results of the weak-coupling limit in the are depicted in Fig.®) along the¥ paths with two different
preceding subsection extend in the regime of the finite couK values: the two paths are labeled as shown in Fig).8
pling strength. Also we obtain the phase diagram for theThe branches in the diagrams are drawn using the same con-
coupled Morris-Lecar model and compare it with th.e one forventions as in Fig. (b). In each subset the upper horizontal
the MVP model to show that the proposed model in @ modiine denotes the in-phase state branthand the lower line
erate range of the parameters may well display the generigengies the antiphase state brang. (Note that the diagram
behaviors of the coupled oscillator systems near the hogepjcted for path 1 of smalldt coincides with the behavior
moc!|n|c b|furc§t|on. . o . _ observed in the case of the weak-coupling liffitg. 7(b)].

Since our primary interest is in the limit cycle oscillations Path 2 of largeK includes the period-doubling cascades
near the homo_clm_|c bifurcation, we f|p,=_1.2 fOF both the of O states. Namely, a\ state undergoes the symmetry-
oscillators, which is close to the bifurcation point, and then ) ) . S .

breaking bifurcation, resulting in two symmetric branches of

vary the two coupling parameterk, and V. In particular, .
our view of interest is limited to the region of the phaseStableo states. As¥ s decreased, th@® states at each

space where each oscillator is in a stable oscillatory state; V\}%ranch undergo the period-doubling cascades and Fhese cas-
may call this region “the region of coupled osciliations.” ¢ades lead to the onset of chaos and are symmetric to each
Therefore, whenever trajectories leave the region we assunfiher as well. Ast is further decreased, two chaotic attrac-
that there are no stable attractors in the region; one mech&rs merge to form a single chaotic attractor, which then
nism of such disappearance is given via a boundary crisigestores the symmetry. This symmetric chaotic attractor
the details of which are beyond the present scope. eventually disappears via a boundary crisis and the trajectory
The resulting phase diagram in the polar coordinatedeaves the region of coupled oscillations. The period-
plane K,¥) is shown in Fig. 8) in the regime ofK<  doubling cascades @ states also occur at the other side of
~0.013. The occurrence of the boundary crisis is denoted aifie BC region.
BC and the region of the parameter space with no attractors In Fig. 8(b), from the diagram corresponding to path 2,
in the region of coupled oscillations is colored black in theone may also notice that the saddle-node bifurcation of the
diagram. Notice that Fig.(@) and Fig. 8a) are drawn in the out-of-phase states provides an additional source for the birth
different parameter planes. of a pair of theO states, which can be viewed as the con-
As shown in the weak-coupling limit, there exist three nection of a stable and an unstable branch of@state that
main kinds of synchronization states: the in-phabg é&n-  originate from different stated, and A, respectively. This
tiphase @A), and out-of-phase) states. AK becomes fi- saddle-node bifurcation is not observed in the weak-coupling
nite, the region of each state starts to be deformed from thémit [Fig. 7(a)] even though they can occur in the phase
phase model prediction, which is manifested by the deflecmodel description; the saddle-node bifurcation occurs at the
tion of the bifurcation lines that depend ¢h Besides the tangency of[“fjlff in Fig. 6. The region of thes® states is
symmetry-breaking bifurcation described previously, thedenoted in Fig. &) as the dark dashed area.
states may also undergo other bifurcations such as period For a comparison with the neuronal model, the phase dia-
doubling that cannot be predicted from the phase model degram for the coupled Morris-Lecar model is shown in Fig. 9.
scription either. For this model the homoclinic bifurcation takes placd gt
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FIG. 9. Phase diagram for the coupled Morris-Lecar model at FIG. 10. Phase diagram for the coupled MVP modelat
1 4c=0.0750. =1.0 up to stronger coupling strength.

~0.0729 and the diagram has been obtaineldi@t 0.0750, The in-phase synchronization states, in addition to the
close to the_homocliniq bifurcatipn. The broader region Ofsymmetry—breaking bifurcation described previously, may
chaos following the period-doubling cascades is denoted by qergo two more kinds of bifurcations: the period-doubling
the hatched area in the figure. . . and the torus bifurcation. The period-doubling either gives
The organization of the various states for the Moms'birth to a stable period-doubled in-phase state, or to none of

Lecar model is not precisely the same as for the MVP rTmde'the stable attractors. In the former case, the period-doubled

which should vary depending on specific models. It is alsom_ hase state undergoes the symmetry-breaking bifurcation
likely that the range of the parameters suchH gandK has P 9 y y 9 '

not been chosen to best show a better coincidence. Nevertiﬁ(—hmh in trn gives birth to a pair of out-of-phase states.

less, the features in the regime of the weak-coupling strengt hesg out-of-p.hase states. undergo a cascade of period-
are essentially the same for both models in terms of the e oublings, Iegdu_wg to chaos in the same way as Qbsgrved for
istence of the bifurcations and the pattern of their occur-{ﬂgasrt?;\?vse;? Z:]gd' ﬁ'}J\;Vgu?ﬁggsia;(ic%:)enzhown in Fig. 10 to
rences. More importantly, the diagrams show that both sys- i : ; . .
P y d ¥ The latter case of the period-doubling bifurcation entail-

tems have stable dephased synchronization in a wide range Co .
of the diffusive coupling regime, which has been the primarﬂng no attractors implies the occurrence of the boundary cri-

interest of the present examination. Figure 9 also shows thalS with an attractor ou_t5|de the region O.f coupled oscilla-
existence of a cusp poinC(P) to which many regions for tions. Therefore, the trajectory suddenly disappears from the

different states merge. The cusp point is not peculiar to th egiqn of COL.'pIEd oscillation. The regime.of the parameters
Morris-Lecar model, as such examples will also show for th or this case is denoted by the black area in the diagram. The

MVP model at different parameter regimésee the follow- period-doubling bifurcations of the in-phase states resulting
ing subsection in these two cases also occur for the Morris-Lecar model, as

can be found in Fig. 9.

The torus bifurcation of the in-phase states occurs when a
complex conjugate pair of the Floquet multipliers leaves the

So far we have emphasized a contrast between the behawnit circle in the complex plane. The bifurcating torus is
iors of the coupled oscillators in two distinctive regimes in observed to retain the symmetry of E8). The flows on the
the aspect of the closeness to the homoclinic bifurcation, thabrus are those for the coupled systems with two competing
is, the coupled van der Pol—type oscillators and the coupleftequencies. Below the curve for the torus bifurcatidn (n
oscillators near the homoclinic bifurcation. In this subsectionFig. 8a), note the existence of the familiar resonant tongues
we examine the behavior of the coupled MVP model in ancorresponding to the frequency-locked states with rational
intermediate regime between those distinctive regimesiotation numbers. The most prominent among them is the
which we may consider to be provided by setting the paramtongue of the one-to-one locking, which is denoted in the
eter atu=1.0. In particular, the case of the stronger couplingdiagram. Notice also that the tongues can persist even in the
strength is considered since it turns out that the weak couabsence of the stable torus nearby in the parameter space.
pling results in rather trivial behaviors that have been alreadyhe torus disappears via a boundary crisis. The torus bifur-
observed in Sec. VA. The phase diagram in this regime otation also occurs for the Morris-Lecar model even though
the parameters is shown in Fig. 10, which demonstrates such a case is not indicated in Fig. 9; it is observed to occur
variety of complex behaviors. at a stronger coupling strengtk,~0.15.

C. Strong coupling with an intermediate p
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A special notice is on the existence of the cusp points irmain synchronization states and to identify the transitions
the northwest and the southeast directions in Fig.@® (n among them through the symmetry-breaking bifurcations.
the diagrany, to which all the regions of the period-doubling For the finite coupling strength we have resorted to the direct
merge to form a common boundary; they are observed to beumerical calculations using the techniques of the bifurca-
the cusp points within the numerical resolution. Such a location analysis, which has revealed the extended behaviors that
tion implies that the codimension of the bifurcation would becannot be predictable from the phase model description. In
infinite. Interestingly, the cusp point also exists in theboth cases the phase diagrams have been obtained and it has
Morris-Lecar model as shown in Fig. 9. Possible questiondeen shown that the in-phase synchronization may not be the
such as its genericity and the unfolding prompt further invesonly stable state in the regime of the diffusive coupling as
tigations. the limit cycle approaches the homoclinic bifurcation.

Again, the global organization pattern of the phase dia- The intermediate regime has also been examined where
gram in Fig. 10 is not quite the same as for the Morris-Lecathe coupled oscillators are in between the two distinctive
model in Fig. 9. However, as we have already noticed in thigegimes of the van der Pol-type oscillators and the oscilla-
subsection, the coincidences between the local behaviors tors near the homoclinic bifurcation. A variety of complex
the two models are striking. Therefore, in this sense of simibehaviors, including the period-doubling and the torus bifur-
larities, it seems that the proposed MVP model representsations, the mode-locking tongues, and chaos arises in this
well the Morris-Lecar model over a wider range of the pa-regime as the coupling strength becomes larger, for which
rameter space not just restricted to the neighbors of the hdhe phase diagram has also been constructed.
moclinic bifurcation with a rather weak-coupling strength.  The phase diagrams for the MVP model have been com-
We presume that this representation can be also approriagared with the one for the Morris-Lecar model, which is only

for other models having the structure of Fig. 1. an example of the neuronal models that have provided mo-
tivations for the present study. The comparison leads to a
VI. CONCLUSIONS reasonable conclusion that the synchronization behaviors ob-

o o served in the MVP model should be generic for the systems
Synchronization between coupled oscillations has beegf coupled oscillators near the homoclinic bifurcation. The
shown to display distinctive behaviors as the limit cycle 0s-cjose coincidences between the local behaviors of the models
cillation approaches the homoclinic bifurcation. In this pa-paye also been observed over a wider range of the parameter

per, a generic physical model for studying such behaviorgpace, which is not restricted only to the neighbors of the

has been proposed using the modified van der Pol equatioRomoclinic bifurcation with a rather weak-coupling strength.
A general form of coupling has been also considered by in-

troducing the vector coupling between the variables of the
two-dlmen5|ona_1l _osm!lators._ o ACKNOWLEDGMENTS
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